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Abstract.  For a vertex 𝑢 of the graph 𝐺, the closeness of 𝑢 in 𝐺 is defined as 𝐶𝐺(𝑢) =
∑ 2−𝑑𝐺(𝑢,𝑣)𝑣∈𝑉(𝐺)−{𝑢} , which is also known as a decay centrality of 𝑢 in 𝐺. The closeness of 

a graph 𝐺(𝑉, 𝐸) is denoted by 𝐶(𝐺) and defined by 

𝐶(𝐺) = ∑ 𝐶𝐺(𝑢) =𝑢∈𝑉(𝐺) ∑ ∑ 2−𝑑𝐺(𝑢,𝑣)𝑣∈𝑉(𝐺)−{𝑢}𝑢∈𝑉(𝐺) . The residual closeness is a concept 

of closeness is denoted by 𝑅(𝐺) and defined by 𝑅(𝐺) = min⁡{𝐶(𝐺 − 𝑢): 𝑢 ∈ 𝑉(𝐺)}, where 

𝐺 − 𝑢 is the graph obtained from 𝐺 by deleting vertex 𝑢 (and its incident edges). In this 

paper, we studied closeness and residual closeness on the lollipop graph and its line graph. 
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1. Introduction  
  
Graph theory has become one of the most powerful mathematical tools in the 

analysis and study of the architecture of networks whose vertices represent the 

components of the system and the edges represent connection between a pair of 

vertices that enable mutual communication. The vulnerability of a communication 

network measures the resistance of network to the disruption of operation after the 

failure of certain stations or communication links. For any communication network 

greater degrees of stability or less vulnerability is required. Vulnerability can be 

measured by certain parameters like domination, connectivity, betweenness, 

binding number, toughness, scattering number, integrity etc. Closeness and residual 

closeness values are the graph parameters that measure the vulnerability and 

robustness of a given graph.  To emphasize the importance of the closeness 

centrality parameter in practice, giving some examples of how this parameter is 

associated with real-world problems is essential. For instance, in diffusive systems, 

it effectively conveys the idea that high-degree nodes are important for resolving 

congestion at bottlenecks; in a protein structural network, it is used as a helpful 

measure to identify critical residues with statistically significant predictions and to 

discover new candidate genes for the disease [14]. 

Closeness can be considered as a measure of how long it will spread information 

from a given node to other reachable nodes in the network. By calculating the 
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closeness and vertex residula closeness for some real networks useful results can be 

achieved. Residual closeness is also similar version of the closeness value that is 

measured the most critical node in the graph after its removal. First notable 

closeness definition introduced in [9]. But, it can not apply to disconnected graphs. 

Another closeness definition is given by Latora and Marchiori [15]. According to 

this definition closeness of a vertex 𝑖 is 𝐶(𝑖) = ∑
1

𝑑(𝑖,𝑗)𝑗≠𝑖 . This new definition 

allows to be applied to disconnected graphs as well. Subsequently, Danglachev [6] 

revised  Latora and Marchiori's definition to make the calculation easier as 

𝐶(𝐺) = ∑ ∑
1

2𝑑(𝑖,𝑗)𝑗≠𝑖𝑖 . The closeness of the graph is defined as 𝐶 = ∑ 𝐶(𝑖)𝑖 . 

Residual vertex and edge closeness parameters calculate closeness value of a graph 

after vertex or edge removal from a graph. The consept of residual closeness based 

on definition of closeness and presented by Dangalchev again [6].  Closeness value 

of the graph is denoted by 𝐶𝑘 = ∑ ∑
1

2𝑑(𝑖,𝑗)𝑗≠𝑖𝑖  where 𝑑𝑘(𝑖, 𝑗) is distance between 

vertices 𝑖 and 𝑗 after vertex 𝑘 is removed from the graph. Then vertex residual 

closeness, denoted by 𝑅, defined as 𝑅 = 𝑚𝑖𝑛𝑘{𝐶𝑘}.  In his study, Dangalchev first 

determined closeness centrality values for fundamental graph structures such as 

complete graphs, stars, paths and cycles. He also expressed the closeness value of a 

new graph resulting from certain graph operations in terms of closeness values of 

the original graphs 𝐺1 and 𝐺2. He also calculated the values for closeness in the 

Thorn graph structure [8]. In Aytaç and Gölpek [11] obtained closeness value of 

Tadpole graph and Mycielski graph has taken into consideration depending on 

diameter of original graph. Residual closeness for Helm and Sunflower graphs and 

cycle related graphs studied in [2] and [18], respectively.  Closeness and residual 

closeness for Banana tress is discussed by H. Tuncel Gölpek [10]. Additionally,  in 

Gölpek [12]  focused on closeness parameter for several tree models.  Relationship 

between closeness, residual closeness and degree, connectivity, betweenness is 

examined in [5] and [6]. Also, closeness for some splitting graphs and residual 

closeness for Mycielski graphs is calculated in [3] and [17], respectively.    

In this paper, the graph 𝐺 is taken as a simple, finite and undirected graph with 

vertex set 𝑉(𝐺) and edge set 𝐸(𝐺). The distance 𝑑(𝑢, 𝑣) between two vertices 𝑢 

and 𝑣 in 𝐺 is the length of a shortest path joining them if any; otherwise 𝑑(𝑢, 𝑣) =
∞. A shortest 𝑢 − 𝑣 path is often called a geodesic. The diameter of 𝐺, denoted by 

𝑑𝑖𝑎𝑚(𝐺) is the largest distance between two vertices in 𝑉(𝐺). The number of the 

neighbor vertices of the vertex 𝑣 is called degree of 𝑣 and denoted by 𝑑𝑒𝑔𝐺(𝑣). 
The minimum and maximum degrees of a vertex of 𝐺 are denoted by 𝛿(𝐺) and 

∆(𝐺). A vertex 𝑣 is said to be pendant vertex if  𝑑𝑒𝑔𝐺(𝑣) = 1. A vertex 𝑢 is called 

support if 𝑢 is adjacent to a pendant vertex [13]. Let 𝑢 be a vertex of a graph 

𝐺 = (𝑉, 𝐸). Then 𝑁(𝑢) = {⁡𝑣 ∈ 𝑉(𝐺), 𝑣⁡𝑎𝑛𝑑⁡𝑢⁡𝑎𝑟𝑒⁡𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡} is the open 

neighborhood of 𝑢, and 𝑁[𝑢] = {𝑢} ∪ 𝑁(𝑢) denotes the closed neighborhood of 𝑢. 

The eccentricity 𝑒(𝑣) of a vertex 𝑣 in a connected graph 𝐺 is max 𝑑(𝑢, 𝑣) for all 𝑢 

in 𝐺. The radius 𝑟(𝐺) is the minimum eccentricity of the vertices. Note that the 
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maximum eccentricity is the diameter. A vertex 𝑣 is a central vertex if 𝑒(𝑣) =
𝑟(𝐺), and the center of 𝐺 is the set of all central vertices [13]. The connectivity 

Ƙ = Ƙ(𝐺)⁡of a graph 𝐺 is the minimum number of vertices whose removal results 

in a disconnected or trivial graph.  

Since lollipop graphs are structures that contain both cycles and paths, the 

closeness and residual closeness values computed for lollipops may be useful in 

studying other graph families. Additionally, the number of edges in complete 

graphs is 
𝑛(𝑛−1)

2
 times the number of vertices. So, number of edges and vertices of 

line graph is more than lollipop graph. As the number of edges increases, so does 

the connectivity and robustness. In network structures where the relationships 

between vertices are modeled as edges, line graphs in which the edges become 

vertices are very important for graph theory. In addition to the closeness value, 

which is one of the important parameters in measuring the stability of a graph, 

calculating the residual closeness value is also important in determining the critical 

vertex that provide information about how much a change in the closeness value of 

the graph  by removing this vertex would cause.  

This paper is organized as follows: Section 2 is devoted to some known results 

about  closeness and residual closeness of some basic graph structures. Section 3 

and 4 are about  closeness and residual closeness  of the lollipop graph 𝐿𝑚,𝑛 and its 

line graph 𝐿(𝐿𝑚,𝑛), respectively. Finally, the conclusion section is presented.   

 

2.  Known Results 

 

The closeness of a graph is defined as 𝐶 = ∑ 𝐶(𝑖)𝑖 , where 𝐶(𝑖) is the closeness of 

a vertex 𝑖, and defined as 𝐶 = ∑
1

2𝑑(𝑖,𝑗)𝑗≠𝑖 . We can also use this definition for not 

connected graphs. 

Let 𝑑𝑘(𝑖, 𝑗) be the distance between vertices 𝑖 and 𝑗 in the graph, received from the 

original graph where all link of vertex 𝑘 are deleted. Then the closeness after 

removing vertex 𝑘 is defined as 𝐶𝑘 = ∑ ∑
1

2𝑑𝑘(𝑖,𝑗)𝑗≠𝑖𝑖 . This definition can also be 

used for disconnected graphs. So, the vertex residual closeness (VRC) of a graph is 

defined as 𝑅 = 𝑚𝑖𝑛𝑘{𝐶𝑘}.  
Theorem 2.1. [6] The closeness of 

(a) the complete graph 𝐾𝑛 with 𝑛 vertices is 𝐶(𝐾𝑛) =
𝑛(𝑛−1)

2
; 

(b) the star graph 𝑆𝑛 with 𝑛 vertices is 𝐶(𝑆𝑛) =
(𝑛−1)(𝑛+2)

4
; 

(c) the path 𝑃𝑛 with 𝑛 vertices is 𝐶(𝑃𝑛) = 2𝑛 − 4 +
1

2𝑛−2
; 

(d) the cycle 𝐶𝑛 with 𝑛 vertices is 

𝐶(𝐶𝑛) = {
2𝑛(1 − 1/2(𝑛−1)/2) , 𝑖𝑓⁡𝑛⁡𝑖𝑠⁡𝑜𝑑𝑑

𝑛(2 − 3/2𝑛/2) , 𝑖𝑓⁡𝑛⁡𝑖𝑠⁡𝑒𝑣𝑒𝑛
 

 

Theorem 2.2. [6] The VRC of 
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(a) the complete graph 𝐾𝑛 with 𝑛 vertices is 𝑅(𝐾𝑛) =
(𝑛−1)(𝑛−2)

2
; 

(b) the star graph 𝑆𝑛 with 𝑛 vertices is 𝑅(𝑆𝑛) = 0; 

(c) the cycle 𝐶𝑛 with 𝑛 vertices is 𝑅(𝐶𝑛) = 2𝑛 − 6 +
1

2𝑛−3
. 

Theorem 2.3. [6] If 𝐻 is a proper subgraph of graph 𝐺, then 𝑅(𝐻) < 𝑅(𝐺). 
Theorem 2.4. [7] If a vertex 𝑘 does not belong to any unique geodesic (shortest 

path) of graph 𝐺, then 𝐶(𝐺\𝑘) = 𝐶(𝐺) − 2𝐶(𝑘). 
Theorem 2.5. [1] Let 𝐺 be a graph. Then, for an endvertex 𝑢 of 𝐺, 𝐶𝑢(𝐺) =
𝐶(𝐺) − 2𝐶(𝑢). 
Theorem 2.6. [1] If a vertex 𝑣 has eccentricity two in 𝐺, then 𝐶(𝑣) = (⁡|𝑉(𝐺)| +
deg(𝑣) − 1⁡)/4. 

Theorem 2.7. [1] Let 𝐺 be a graph and {𝑢, 𝑣} ∈ 𝑉(𝐺). If 𝑢 is an endvertex of the 

support vertex 𝑣 in 𝐺, then 𝐶𝑣(𝑢) = 0. 

 

3. Closeness of Lollipop Graph and Line Graph 

In this section, we will give the definitions of Lollipop graph 𝐿𝑚,𝑛 and line graph. 

Then, we will calculate closeness value of 𝐿𝑚,𝑛 and its line graph 𝐿(𝐿𝑚,𝑛). 
Definition 3.1. [16] 

The lollipop graph 𝐿𝑚,𝑛 is a graph obtained from a complete graph 𝐾𝑚 and a path 

𝑃𝑛, by joining one of the end vertices of 𝑃𝑛 to one of the vertices of 𝐾𝑚. A lollipop 

graph 𝐿4,3 is illustrated in Figure 1. 

 
Figure 1: Lollipop graph 𝐿4,3 

 

Theorem 3.1. If 𝐿𝑚,𝑛 is a lollipop graph with 𝑚 + 𝑛 vertices, then the closeness 

for the lollipop 𝐿𝑚,𝑛  is  

𝐶(𝐿𝑚,𝑛) = (𝑚 − 1) [
2𝑛+1−1

2𝑛
+ (𝑚 − 2)

1

2
] +

2𝑛(𝑛−1)+1

2𝑛−1
. 

Proof. Due to form of lollipop graph, we can split into three subforms of the graph 

such as 𝐶(𝑣𝑖), where 𝑣𝑖 is any vertex of 𝐾𝑚 for 𝑖 = 1,𝑚 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝐶(𝑃𝑛+1~𝐾𝑚−1), 
𝐶(𝑃𝑛+1).  Let 𝑣1, 𝑣2, 𝑣3,… , 𝑣𝑚 be the vertices that make up the complete graph 𝐾𝑚 

and 𝑢1, 𝑢2,𝑢3, … , 𝑢𝑛 be the vertices that make up the path 𝑃𝑛. The lollipop graph 

𝐿𝑚,𝑛 contains a path 𝑃𝑛+1 with the vertices 𝑣𝑚, 𝑢1, 𝑢2, … , 𝑢𝑛. Any vertex 𝑣𝑖, 

𝑖 = 1,𝑚 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ in 𝐾𝑚 is at distance 1 to the other vertices of 𝐾𝑚, is at distance  2 to 
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𝑢1, is at distance  3 to 𝑢2,..., is at distance  𝑛 + 1 to 𝑢𝑛. Hence, the closeness value 

of any vertex of 𝑣𝑖, 𝑖 = 1,𝑚 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is 

𝐶(𝑣𝑖) = (𝑚 − 1)
1

2
+

1

22
+

1

23
+⋯+

1

2𝑛+1
 

                                            

                                          =(𝑚 − 2)
1

2
+

1

2
+

1

22
+

1

23
+⋯+

1

2𝑛+1
 

 

We denote the closeness value of the vertices in 𝑃𝑛+1 to the complete graph 𝐾𝑚−1 

by 𝐶(𝑃𝑛+1~𝐾𝑚−1). Then, distance between the vertex 𝑣𝑚 and all vertices of 𝐾𝑚−1 

and 𝑢1 is 1.  Distance between the 𝑣𝑚 and 𝑢2, … , 𝑢𝑛 is 
1

22
, 
1

23
,..., 

1

2𝑛+1
   as well , 

respectively. Hence,  

 

𝐶(𝑃𝑛+1~𝐾𝑚−1) + 𝐶(𝑣𝑖) = (m− 1)[⁡(⁡m − 2)
1

2
+ 2(

1

2
+

1

22
+

1

23
+⋯+

1

2𝑛+1
⁡)]⁡ 

 

We know from the Theorem 2.1 (c) that 𝐶(𝑃𝑛+1) = 2(𝑛 + 1) − 4 +
1

2𝑛−1
=

2(𝑛 − 1) +
1

2𝑛−1
=

2𝑛(𝑛−1)+1

2𝑛−1
. Since 

1

2
+

1

22
+

1

23
+⋯+

1

2𝑛+1
=

2𝑛+1−1

2𝑛+1
, the 

closeness value of 𝐿𝑚,𝑛 is  

𝐶(𝐿𝑚,𝑛) = (𝑚 − 1) [⁡(𝑚 − 2)
1

2
+ 2(⁡

1

2
+

1

22
+

1

23
+⋯+

1

2𝑛+1
⁡)] + 𝐶(𝑃𝑛+1) 

 

                  = 2(𝑚 − 1)
2𝑛+1−1

2𝑛+1
+ (𝑚 − 1)(𝑚 − 2)

1

2
+

2𝑛(𝑛−1)+1

2𝑛−1
 

 

                  = (𝑚 − 1) [⁡
2𝑛+1−1

2𝑛
+ (𝑚 − 2)

1

2
⁡] +

2𝑛(𝑛−1)+1

2𝑛−1
 

 

The proof is completed. 

 

Definition 3.2. [4] 

Given a nonempty graph 𝐺, we define the line graph 𝐿(𝐺) of G as that graph 

whose vertices can be put in one to one correspondence with the edges of 𝐺 in such 

a way that two vertices of 𝐿(𝐺) are adjacent if and only if the corresponding edges 

of 𝐺 are adjacent. It is relatively easy to determine the number of vertices and the 

number of edges of the line graph 𝐿(𝐺)  of a graph 𝐺 in terms of easily computed 

quantities in 𝐺. Indeed, if 𝐺 is a (𝑝, 𝑞) graph with degree sequence 𝑑1, 𝑑2, … , 𝑑𝑝 

and 𝐿(𝐺) is a (𝑝′, 𝑞′)⁡graph, then 𝑝′ = 𝑞 and 𝑞′ = ∑ (
𝑑𝑖
2
)

𝑝
𝑖=1  since each edge of 

𝐿(𝐺)  corresponds to a pair of adjacent edges of 𝐺. Line graph 𝐿(𝐿4,3) is illustrated 

in Figure 2. 
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Figure 2: Line graph 𝐿(𝐿4,3) 

 

 

Theorem 3.2.  If 𝐿(𝐿𝑚,𝑛) is a line graph of the lollipop graph 𝐿𝑚,𝑛 , then the 

closeness value of 𝐿(𝐿𝑚,𝑛)   with (
𝑚
2
) + 𝑛 =

𝑚(𝑚−1)

2
+ 𝑛 vertices is 

 

𝐶 (𝐿(𝐿𝑚,𝑛)) =
(𝑚3 − 3𝑚2 + 2𝑚)(𝑚 + 5)

16
+ 2𝑛 − 4 +

1

2𝑛−2
+
(𝑚 − 1)(𝑚 + 2)(2𝑛 − 1)

2𝑛+2
 

 

Proof. Due to form of 𝐿(𝐿𝑚,𝑛) graph, we can split into three subforms of 𝐿𝑚,𝑛 in 

terms of closeness value such as 𝐶(𝐿(𝐾𝑚)), 𝐶(𝑃𝑛)⁡and 𝐶(𝐿(𝐾𝑚)~𝑃𝑛). Let  

𝑣1,2, 𝑣1,3, … , 𝑣1,𝑛, 𝑣2,3, 𝑣2,4, … , 𝑣2,𝑛, 𝑣3,4, 𝑣3,5, … , 𝑣3,𝑛, … , 𝑣𝑚−1,𝑛  are the vertices 

make up the graph 𝐿(𝐾𝑚) means 𝑉(𝐿(𝐾𝑚)) = {⁡𝑣𝑖,𝑗}, where 𝑖 = 1,𝑚 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 

𝑗 = 𝑖 + 1,𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and |⁡𝑉(𝐿(𝐾𝑚))⁡| = (
𝑚
2
) =

𝑚(𝑚−1)

2
.  𝐿(𝐿𝑚,𝑛)  contains a path graph 

𝑃𝑛 of order 𝑛 with the vertices 𝑣𝑚𝑢1, 𝑢1,2, 𝑢2,3, 𝑢3,4, … , 𝑢𝑛−1,𝑛. Every vertices of 

𝐿(𝐾𝑚) are adjacent to |⁡𝑉(𝐿(𝐾𝑚−𝑖))| + 2𝑖 vertices. So, distance between any 

vertex 𝑣𝑖,𝑗 in 𝐿(𝐾𝑚) and 2𝑚 − 4⁡vertices in 𝐿(𝐾𝑚)  is 1, for 𝑚 ≥ 4. Similarly, 

distance between any vertex 𝑣𝑖,𝑗 in 𝐿(𝐾𝑚) and (
𝑚
2
) − 2𝑚 + 3  remaining vertices 

in 𝐿(𝐾𝑚)  is 2. Hence, 

 

𝐶(𝑣𝑖,𝑗) = (2𝑚 − 4)
1

2
+ (

𝑚(𝑚 − 1)

2
− 2𝑚 + 3)

1

22
 

 

                                     = (𝑚 − 2) +
𝑚2−5𝑚+6

23
 

                                 ⁡   = (𝑚 − 2)(1 +
𝑚−3

23
) 

                                                                                                                      

Since we have (
𝑚
2
) vertices in 𝐿(𝐾𝑚),                                  
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𝐶(𝐿(𝐾𝑚)) =
𝑚(𝑚 − 1)

2
(𝑚 − 2)(1 +

𝑚 − 3

23
) 

 

                                                =
(𝑚3−3𝑚2+2𝑚)(23+(𝑚−3))

24
 

                                                

                                                =
(𝑚3−3𝑚2+2𝑚)(𝑚+5)

16
                                              (1)                                                 

                                               

                                    

We know from the Theorem 2.1 (c) 𝐶(𝑃𝑛) = 2𝑛 − 4 +
1

2𝑛−2
                                 (2) 

The vertex 𝑣𝑚𝑢1 is at distance 1 to 𝑚 − 1 vertices of 𝐿(𝐾𝑚)  and is at distance 2 to  
𝑚(𝑚−1)

2
− (𝑚 − 1) vertices of 𝐿(𝐾𝑚). So, 

 

𝐶(𝑣𝑚𝑢1) =
(𝑚2 − 3𝑚 + 2)

2

1

22
+ (𝑚 − 1)

1

2
 

=
𝑚− 1

2
(
𝑚 − 2

22
+ 1) 

 = 𝐴 

Closeness value of 𝑢1,2, 𝑢2,3, 𝑢3,4, … , 𝑢𝑛−1,𝑛 to all vertices of 𝐿(𝐾𝑚) is⁡
1

2
𝐴,

1

22
𝐴,

1

23
⁡𝐴, … ,

1

2𝑛−1
𝐴, respectively. We will consider closeness value to the vertices 

in 𝐿(𝐾𝑚) and⁡⁡𝑃𝑛  in both direction. Hence, we have 

𝐶(𝐿(𝐾𝑚)~𝑃𝑛) = 2(𝐴+
1

2
𝐴 +

1

22
𝐴,

1

23
⁡𝐴, … ,

1

2𝑛−1
𝐴) 

                         = 2𝐴(1 +
1

2
+

1

22
+⋯+

1

2𝑛−1
) 

                         = 2(
𝑚−1

2
)(1 +

𝑚−2

22
)
2𝑛−1

2𝑛−1
 

                         =
(𝑚−1)(𝑚+2)(2𝑛−1)

2𝑛+2
                                                                        (3) 

By summing (1), (2) and (3), we have  

𝐶 (𝐿(𝐿𝑚,𝑛)) =
(𝑚3 − 3𝑚2 + 2𝑚)(𝑚 + 5)

16
+ 2𝑛 − 4 +

1

2𝑛−2
+
(𝑚 − 1)(𝑚 + 2)(2𝑛 − 1)

2𝑛+2
 

 

The proof is completed. 

 

4. Residual Closeness of Lollipop Graph and Line Graph  

 

In order to evaluate residual closeness value, a vertex will be removed from the 

graph and the minimum closeness value will be calculated after removing. 

Therefore, the most sensitive vertex will be determined in the graph. In the lollipop 

graph structure, we will obtain four distinct value after removing. These 

motification can be get from removing the  vertex 𝑢1, the vertex 𝑣𝑚 that is 

connected with 𝑢1 , any vertex 𝑣𝑖, 𝑖 = 1,𝑚 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ except 𝑣𝑚 in 𝐾𝑚 and any vertex 
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𝑢𝑖, 𝑖 = 2, 𝑛̅̅ ̅̅̅  except 𝑢1⁡in 𝑃𝑛. After determining the effect of these motifications on 

the graph in the next theorem, we will get residual closeness value of lollipop 

graph. 

 

Theorem 4.1. Let 𝐿𝑚,𝑛 be a lollipop graph with 𝑚 + 𝑛 vertices. The residual 

closeness value of 𝐿𝑚,𝑛⁡is 

𝑅(𝐿𝑚,𝑛) =
(𝑚 − 1)(𝑚 − 2)

2
+ 2𝑛 − 4 +

1

2𝑛−2
 

 

Proof. We have four different value after vertex removing. 

Case 1. If 𝑢1 is removed then we have two remaining graphs such as a complete 

graph 𝐾𝑚 and a path graph 𝑃𝑛−1. Hence, 

 

𝑅1 = 𝐶(𝐾𝑚) + 𝐶(𝑃𝑛−1) 
 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡=
𝑚(𝑚 − 1)

2
+ 2(𝑛 − 1) − 4 +

1

2𝑛−3
 

 

Case 2. If 𝑣𝑚 is removed then we have two remaining graphs such as a complete 

graph 𝐾𝑚−1 and a path graph 𝑃𝑛. Hence, 

𝑅2 = 𝐶(𝐾𝑚−1) + 𝐶(𝑃𝑛) 
 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡=
(𝑚 − 1)(𝑚 − 2)

2
+ 2𝑛 − 4 +

1

2𝑛−2
 

Case 3. If any vertex 𝑣𝑖, 𝑖 = 1,𝑚 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ in the graph 𝐾𝑚 is removed, then 

 

𝑅3 = 𝐶(𝐿𝑚−1,𝑛) 

                                                         = (𝑚 − 2) [
2𝑛+1−1

2𝑛
+ (𝑚 − 3)

1

2
] +

2𝑛(𝑛−1)+1

2𝑛−1
 

Case 4. If any vertex 𝑢𝑖, 𝑖 = 2, 𝑛̅̅ ̅̅̅   in the graph 𝑃𝑛 is removed, then 

𝑅4 = 𝐶(𝐿𝑚,𝑖−1) + 𝐶(𝑃𝑛−𝑖) 

= (𝑚 − 1) [
2𝑖 − 1

2𝑖−1
+ (𝑚 − 2)

1

2
⁡] +

2𝑖−1(𝑖 − 2) + 1

2𝑖−2
+ 2(𝑛 − 𝑖) − 4 +

1

2𝑛−𝑖−2
 

 

If we compare Case 1, 2, 3 and 4, then it can be seen that the value comes from 

Case 2 is the minimum value. Hence,  

 

𝑅(𝐿𝑚,𝑛) =
(𝑚 − 1)(𝑚 − 2)

2
+ 2𝑛 − 4 +

1

2𝑛−2
 

The proof is completed. 
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Theorem 4.2. Let 𝐿(𝐿𝑚,𝑛) be a line graph of the lollipop graph 𝐿𝑚,𝑛. Then residual 

closeness value of 𝐿(𝐿𝑚,𝑛)  is  

𝑅 (𝐿(𝐿𝑚,𝑛)) =
(𝑚3 − 3𝑚2 + 2𝑚)(𝑚 + 5)

16
+ 2(𝑛 − 1) − 4 +

1

2𝑛−3
 

 

Proof. We will denote the vertices corresponding to the edges of the complete 

graph 𝐾𝑚 in the lollipop graph 𝐿𝑚,𝑛 by 

𝑣1,2, 𝑣1,3, 𝑣1,4, 𝑣1,5, … , 𝑣1,𝑚, 𝑣2,3, 𝑣2,4, 𝑣2,5, … , 𝑣2,𝑚, 𝑣3,4, 𝑣3,5, … , 𝑣3,𝑚, … , 𝑣𝑚−1,𝑚 

and the vertices corresponding to the edges of the path graph 𝑃𝑛 in the lollipop 

graph 𝐿𝑚,𝑛 by 𝑣𝑚𝑢1, 𝑢1,2, 𝑢2,3, 𝑢3,4, … , 𝑢𝑛−1,𝑛.  We have four different value after 

vertex removing. These values can be get from removing  any vertex 𝑣𝑖,𝑚, 

𝑖 = 1,𝑚 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ in 𝐿(𝐾𝑚), 𝑣𝑖,𝑗, 𝑖 = 1,𝑚 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑗 = 𝑖 + 1,𝑚 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  in 𝐿(𝐾𝑚),  the vertex 

𝑣𝑚𝑢1 connecting 𝐿(𝐾𝑚) and 𝐿(𝑃𝑛),  any vertex 𝑢𝑖,𝑖+1, where 𝑖 = 1, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅  in 𝐿(𝑃𝑛) 

Case 1. If any vertex 𝑣𝑖,𝑚, 𝑖 = 1,𝑚 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ in 𝐿(𝐾𝑚) is removed then the residual 

closeness value 𝑅1 is obtained by subtracting the closeness value of this vertex in 

𝐿(𝐾𝑚) from the 𝐶(𝐿(𝐿𝑚,𝑛)). The closeness value of these vertices  is (𝑚 − 2)(1 +
𝑚−3

23
) in 𝐿(𝐾𝑚) and 1 −

1

2𝑛
 in 𝐿(𝑃𝑛). We must consider closeness value to the 

remaining vertices and these vertices in both direction. Hence, 

𝑅1 = 𝐶 (𝐿(𝐿𝑚,𝑛)) − 2{(𝑚 − 2) (1 +
𝑚 − 3

23
) + (1 −

1

2𝑛
)} 

=
(𝑚3 − 3𝑚2 + 2𝑚)(𝑚 + 5)

16
+ 2𝑛 − 4 +

1

2𝑛−2
+
(𝑚 − 1)(𝑚 + 2)(2𝑛 − 1)

2𝑛+2

− 2{(𝑚 − 2) (1 +
𝑚 − 3

23
+ 1 −

1

2𝑛
)} 

 

Case 2.  If any vertex 𝑣𝑖,𝑗, 𝑖 = 1,𝑚 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑗 = 𝑖 + 1,𝑚 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  in 𝐿(𝐾𝑚) is removed 

then the residual closeness value 𝑅2 is obtained by subtracting the closeness value 

of this vertex in 𝐿(𝐾𝑚)  from the 𝐶(𝐿(𝐿𝑚,𝑛)). The closeness value of these 

vertices  is (𝑚 − 2)(1 +
𝑚−3

23
) in 𝐿(𝐾𝑚)  and 

1

2
(1 −

1

2𝑛
) in 𝐿(𝑃𝑛). We must 

consider closeness value to the remaining vertices and these vertices in both 

direction. Hence, 

𝑅2 = 𝐶 (𝐿(𝐿𝑚,𝑛)) − 2{(𝑚 − 2) (1 +
𝑚 − 3

23
) +

1

2
(1 −

1

2𝑛
)} 

=
(𝑚3−3𝑚2+2𝑚)(𝑚+5)

16
+ 2𝑛 − 4 +

1

2𝑛−2
+

(𝑚−1)(𝑚+2)(2𝑛−1)

2𝑛+2
− 2(𝑚 − 2)(1 +

𝑚−3

23
)-(⁡1 −

1

2𝑛
) 

 

Case 3. If the vertex 𝑣𝑚𝑢1 in 𝐿(𝑃𝑛) is removed then the residual closeness value 𝑅3 

is 

𝑅3 = 𝐶(𝐿(𝐾𝑚)) + 𝐶(𝑃𝑛−1) 

=
(𝑚3 − 3𝑚2 + 2𝑚)(𝑚 + 5)

16
+ 2(𝑛 − 1) − 4 +

1

2𝑛−3
 



B. ATAY: CLOSENESS AND RESIDUAL CLOSENESS OF LOLLIPOP GRAPHS … 

 121 

 

Case 4. If the vertex 𝑢𝑖,𝑖+1,  where 𝑖 = 1, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅   in 𝐿(𝑃𝑛) is removed then the 

residual closeness value 𝑅4 is 

 

𝑅4 = 𝐶(𝐿(𝐿𝑚,𝑖) + 𝐶(𝑃𝑛−1−𝑖) 

=
(𝑚3 − 3𝑚2 + 2𝑚)(𝑚 + 5)

16
+ 2𝑖 − 4 +

1

2𝑖−2
+
(𝑚 − 1)(𝑚 + 2)(2𝑖 − 1)

2𝑖+2

+ 2(𝑛 − 1 − 𝑖) − 4 +
1

2𝑛−3−𝑖
 

 

If we compare Case 1, 2, 3 and 4, then it can be seen that the value comes from 

Case 3 is the minimum value. Hence, 

 

𝑅 (𝐿(𝐿𝑚,𝑛)) =
(𝑚3 − 3𝑚2 + 2𝑚)(𝑚 + 5)

16
+ 2(𝑛 − 1) − 4 +

1

2𝑛−3
 

 

The proof is completed. 

 

 

5.    Conclusion 

 

Stability and robustness of a network under some failures are defined as 

vulnerability. Closeness and vertex residual closeness are distinctive graph 

vulnerability parameters. Calculation of closeness and vertex residual closeness for 

simple graph types is important because if one can break a more complex network 

into smaller networks, then under some conditions the solutions for the 

optimization problem on the smaller networks can be combined to a solution for 

the optimization problem on the larger network. In this paper, closeness and vertex 

residual closeness formulas have been obtained for lollipop graph and its line 

graph.  
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